Curriculum Vitae/Resume

Graduate Program in Robotics Ph.D.

Google Scholar | GitHub | 0901joonkyung@gmail.com | LinkedIn CY303, 35 Backbeom-ro, Mapo-gu, Seoul, South Korea 04107

Educations

Sogang University

- M.S. in Electronic Engineering (Advisor: Prof. Changjoo Nam)
- B.S. in Electronic Engineering (Cum Laude)

Carnegie Mellon University

- Visting Scholar at S3D in School of Computer Science (AI Intensive Education Program) Fully funded by the South Korean Government (IITP, Ministry of Science and ICT)

Research Experiences

Advanced Agent-Robotics Technology Lab, Carnegie Mellon University Visiting Scholar

- Analyzing potential multi-agent conflicts, including collisions, in Multi-Agent Informative Path Planning (MAIPP) during cooperative information gathering (under the guidance of Dr. Woojun Kim and Prof. Katia Sycara).
- Researching MAIPP adaptability in dynamic environments(e.g., fire scenarios).

Al Robotics Lab, Sogang University

Graduate Researcher

Seoul, South Korea Mar. 2023 – Aug. 2024

- Focused on resolving conflicts and ensuring safety in (decentralized) multi-robot navigation.
- Developed dynamic simulation environments for testing omnidirectional and differential-drive multi-robot navigation using PyBullet (Video1) and Isaac Sim (Video2).
- Implemented interactive simulation environments using PyBullet to control mobile robot navigation modes for collecting human demonstration data.
- Designed and implemented a multi-robot testing system with real robots using ROS2 and TurtleBot4. (Video1), (Video2)

AI Robotics Lab, Sogang University

Undergraduate Intern

Seoul, South Korea Sep. 2022 – Feb. 2023

Daejeon, South Korea

Jan. 2022 - Feb. 2022

- Developed a 3D simulation environment using PyBullet and Gymnasium (formerly OpenAI Gym) to train mobile robots for collision-free navigation in confined spaces with randomly placed obstacles.
- Participated in Pick-and-Place projects with a mobile manipulator, gaining experience with the ROS Navigation Stack. (Video)

Machine Decision Intelligence & Learning Lab, KAIST

Undergraduate Visiting Student

- Participated in an 8-week seminar on Reinforcement Learning (RL), focusing on the mathematical and theoretical foundations of RL algorithms.
- Implemented Reinforcement Learning algorithms (e.g., Q-learning, DQN, DDPG, PPO) using Python and PyTorch.

Seoul, South Korea Mar. 2023 – Present Mar. 2017 – Feb. 2023

Pittsburgh, United States Aug. 2024 – Present

Pittsburgh, United States

Oct. 2024 - Present

gation.

Publications

[PREPRINTS][P]

- [P1] Joonyeol Sim, Joonkyung Kim, and Changjoo Nam, "Safe Interval RRT* for Scalable Multi-Robot Path Planning in Continuous Space," Under revision, 2024. (Paper)
 - Implemented and reconstructed a Graph Transformer-based MAPF (Multi-Agent Path Finding) algorithm as a baseline to demonstrate the scalability of our methods through comparative analysis.
 - Developed a dynamic 3D simulation environment in NVIDIA Isaac Sim to evaluate the feasibility of our algorithms on real-like robots, supporting up to 100 omnidirectional robots with dynamic controllers following planned paths. (Video)

[CONFERENCES][C]

- [C2] Joonkyung Kim, Sangjin Park, Wonjong Lee, Woojun Kim, Nakju Doh, and Changjoo Nam, "Escaping Local Minima: Hybrid Artificial Potential Field with Wall-Follower for Decentralized Multi-Robot Navigation," in Proc. of Int. Conf. on Robotics and Automation (ICRA), 2025. (Paper), (Video)
 - Developed decentralized multi-robot navigation algorithms, switching between Artificial Potential Field (APF) and Wall-Following (WF) methods in mapless, communication-free environments.
 - Proposed adaptive switching methods using 2D-LiDAR to adjust robot navigation, extending APF-WF applicability in dynamic, non-convex environments.
 - Proposed a learning-based switching model trained on (human) expert demonstration data to mitigate multi-robot conflicts from symmetric behaviors, even without inter-robot communication.
- [C1] Joonkyung Kim, and Changjoo Nam. "Room for me?: Mobile Navigation for Entering a Confined Space Using Deep Reinforcement Learning." in Proc. of Int. Conf. on Ubiquitous Robots (UR), IEEE, 2023. (Paper), (Video)
 - Motivated by the limitations in elevator usage of existing robots, such as reliance on designated boarding points or dedicated elevators.
 - Proposed a deep reinforcement learning approach enabling safe navigation without collisions in confined spaces with randomly placed obstacles, such as elevators.

Scholarships

Sogang Scholarship

Funded by Sogang University (graduate program)

Selected Coursework (Graduate)

- [CMU 11-785] Introduction to Deep Learning (Link)	Fall 2024
- [CMU 11-775] Large Scale Multimedia Analysis	Fall 2024
- [CMU IITP] Natural Language Processing	Fall 2024
- [SGU EEE6600] Intelligent Robotics System	Spring 2024
- [SGU AIE6214] Applied Linear Algebra	Fall 2023
- [SGU EEE6557] Reinforcement Learning	Spring 2023
- [SGU EEE6431] Neural Networks	Spring 2023
- [SGU EEE6470] Optimization Theory	Spring 2023
- [SGU EEE5477] Pattern Recognition	Fall 2022

Academic Service & Teaching Assistant

Review

- Conference: ICRA (2025)

Teaching Assistant

- [SGU | EEE3141] Introduction to Control Systems

Technical Skills

Programming Languages: Python, C, MATLAB Experienced Tools (Frameworks): PyTorch, Gymnasium(Gym), PyBullet, Isaac Sim, ROS2 Spring 2024

Mar. 2023 - Present